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Abstract. Recently, the notion ofconformal crystalswas introduced by Rothenet al to
describe topologically perfect, two-dimensional (2D) lattices corresponding to locally isotropic
deformations of 2D periodic lattices. In the present paper we study the applicability of this
idea to classical systems in a uniform field. We prove that within the continuous medium limit
no conformal mapping of a 2D hexagonal lattice exists which gives any equilibrium structure
of an infinitely large 2D system, interacting via a pairwise potential of the formu(r) = γ /rn

(n > 2), in a uniform gravitational field. The analytical arguments are supported by computer
simulations of a system withn = 3.

1. Introduction

In many-body systems which are influenced by strong external fields, the density of matter,
smoothed over a few intermolecular distances, is position dependent, in general. This is
in contrast to bulk structures stable without any external field, like crystals, for which the
smoothed density is uniform in space. Thus, it is clear that for systems embedded in
external fields, structures of minimum energy cannot be restricted to periodic crystalline
lattices. This leads to the question of what are the ordered structures, if any, into which
fluids freeze in external fields.

A particular case of this problem was studied experimentally by Pierański [1]. He
investigated a 2D system of magnetic spheres placed in a uniform external gravitational
field. In the system (consisted of steel balls placed on a slightly tilted plane and interacting
by magnetic moments induced by a magnetic field perpendicular to this plane) he discovered
a highly ordered structure in which lines connecting subsequent neighbouring particles were
not straight, as in the case of periodic crystalline lattices, but formed rainbow-like arcs. The
structure observed, and coined by himgravity’s rainbow, was similar to the structure shown
in figure 1. The latter is obtained by mapping sites of a hexagonal lattice contained in a
circular stripe by a complex logarithmic function. As is easy to see, this structure exhibits
horizontal periodicity.

The characteristic feature of gravity’s rainbow is that almost every particle (except those
at the surface) has exactly six nearest neighbours, the same as in the hexagonal crystal, which
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Figure 1. The structure obtained by conformal mapping,w = (1/ia) logaz, of a circular stripe
of a hexagonal lattice;z = x + iy, w = u = iv, and(x, y), (u, v) represent the coordinates of
the lattice sites of the hexagonal lattice and the conformal lattice, respectively.

is the stable structure of the system without the external gravitational field [1]. In contrast
to the zero-gravitational-field crystal, the orientations of the ‘atom–atom’ bonds in gravity’s
rainbow depend on the positions of the particles. This allows it to fulfil the condition of
non-uniform mass distribution. Visual inspection of the structure recorded by Pierański
suggested that the arcs composed of the bonds cross each other atπ/3-angles, the same as
in the standard 2D hexagonal lattice. Such an assumption implies that gravity’s rainbow
can be described by mapping a domain of a hexagonal lattice by a locally angle-preserving
transformation. This led to the notion ofconformal crystalsintroduced by Rothenet al [7]
for 2D topologically perfect structures obtained by locally isotropic deformations of (certain
subsets, in general, of) 2D periodic lattices. (As is easy to notice, this definition can be
generalized to quasicrystalline lattices.) The structure shown in figure 1, as given by an
analytic function, is an example of a conformal crystal.

The notion of conformal crystals was expected to be helpful not only in describing
freezing of the 2D system of magnetic spheres in the gravitational field [7]. Structures
locally similar to gravity’s rainbow, although less ordered, were also found in systems
of magnetic holes [2] and in crystals grown in special conditions [3]. Ordered arc-like
structures also exist in biological systems. The well known example is the problem of
phyllotaxis [4], to which an energetic approach has recently been proposed [5, 6].

As follows from the definition, conformal crystals correspond to locally isotropic
deformations (i.e. locally pure compression or expansion, without shear) of crystalline
lattices. The local stress tensor for such deformations is reduced to pure pressure (see
section 4). This feature is characteristic for bulk fluids, and very exceptional for ordered
structures when the smoothed density distribution is non-uniform in space. Taking into
account the similarity between disordered fluids and the conformal crystals, one might
expect that the latter play the role of reference structures for systems freezing in strong
fields. Unfortunately, for a given interaction potential of particles forming a system,
stable conformal solutions for the structure of the system exist only in particular fields
(section 4). Even when these fields do not correspond to situations of practical interest,
however, the knowledge of such solutions may be usefulif modifications (of practical
interest) of these fields can lead to minimum-energy structures which correspond to (non-
conformal) deformations of the reference conformal structureswithout any change of the
topology of the latter. Studies of simple models constitute a way to check if it is so.

Gravity’s rainbow is a structure one can start with. Reference [7] may suggest that this
structure is an example of a conformal crystal. In the present paper we show that this is not
so. Also, our results indicate that, in general, stability of the system of magnetic spheres in
the gravitational field requires the presence of defects in the (non-conformally) deformed
crystalline lattice.
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We studied the problem of gravity’s rainbow both numerically, by computer simulations,
and analytically, in the limit of a continuous medium. The numerical studies, described in
sections 2 and 3, concern finite systems of particles. In section 2 we briefly describe
computer simulations performed for systems of some 1500 particles interacting via the 3-
inverse-power potential with a hard core. Placing the system in uniform gravitational fields
we obtained structures composed of grains with local sixfold symmetry. Although the
grains were similar to fragments of gravity’s rainbow, the whole structure did not exhibit
any horizontal order (periodicity) characteristic of gravity’s rainbow. The potential used in
the simulations was believed to describe the interparticle interactions in the experimental
system of [1]. In section 3 we present a trial to verify this assumption. Our results confirm
that the model potential is a reasonable approximation for the interactions of the magnetic
spheres. The analytical results (section 4) are obtained for infinite systems, approximated
by continuous media. We start with some general considerations concerning conformal
crystals and then we illustrate them in the case of a system interacting via then-inverse-
power potential which is embedded in a constant uniform field. We show that, within the
continuous medium approximation, no conformal crystal is stable in such a case for anyn.
We conjecture that no smooth potential can lead to a stable classical conformal crystal in a
uniform field. We indicate, however, that the ‘logarithmic’ conformal crystals can be stable
in fields which do not depend on the horizontal coordinate and decay exponentially with
the vertical coordinate. The last section contains conclusions.

If not specified explicitly otherwise, all the considerations presented in this paper are
restricted to two-dimensional classical systems.

2. Computer simulations

In order to reproduce the experimental results obtained in [1] we studied 2D systems of
N 6 1500 particles, i.e. close to that investigated experimentally [1]. The advantage of the
simulations over the real experiment is that the interaction potential is known exactly and
the energy of the system can be directly monitored.

The coordinates of the particles were restricted by

0 6 u 6 L 0 6 v

where u, v denote the horizontal and vertical coordinates, respectively, andL was used
as one of parameters describing the system. The system was embedded in an external
gravitational field with the potential:

uexternal≡ ugrav = mgv.

The particles interacted by a pairwise potential defined as

u(r) = γ r−3 + uhard(r) (1)

whereuhard(r), representing the hard core of the particles of diameterd, is zero forr > d

and infinity elsewhere; for simplicity we tookd as unity. Such a choice ofu(r) was related
to the fact that the above potential was expected to be the simplest model of interactions in
the system of magnetic spheres investigated in [1].

As mg only scales the parameterγ in (1) we fixed it to unity,mg = 1, and the total
energy of the system was given by

Utotal = γ

N−1∑
i=1

N∑
j=i+1

r−3
ij +

N∑
i=1

vi + Uhard. (2)
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To search for the minimum of the energy,Utotal, we used a version of the gradient
method in the configurational space. We performed a series of simulations with various
γ , L and N , starting from either ordered or disordered structures. We did not succeed in
obtaining any structure as ordered as that found by Pierański; one of the typical structures
we found is shown in figure 2. As can be seen, this structure consists of some domains
of the arc structure with sixfold local symmetry. However, clearly no periodic order in the
horizontal direction, present in gravity’s rainbow (see figure 2 in [1]), can be detected in
figure 2.

Figure 2. Representative structure for a (locally, at least) stable configuration of the simulated
system. It can be seen that domains of the arc structure are separated by defects.

To eliminate the possibility that our lack of success in reproducing gravity’s rainbow
is an artefact of the numerical procedure used, we also performed some simulations using
conformal lattices, similar to that shown in figure 1, as the initial configurations. The
structures resulting in the energy minimization process were similar to that shown in figure 2,
although they sometimes exhibited slightly better local ordering. We should add here
that using a different method of energy minimization, Brownian dynamics with decreasing
temperature, one obtains qualitatively the same results also for other systems [8].

Thus, we conclude that the structure, shown in figure 2, can be thought of as
representative for a typical minimum energy state of the system studied.

3. Verification of the interaction potential

If one assumes that gravity’s rainbowis not a universal structure of soft 2D matter in the
external uniform field but depends on the details of the interaction potential, one should
check how well the 3-inverse-power potential, used in the simulations, approximates the
real interactions in [1]. To estimate the ‘quality’ of the potential applied in the simulations,
we used the reasoning described below.

Let us assume that the potential of a single levitating (i.e. distanced from other particles
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by more than the core diameter) particle is

ui = γ

N∑
j 6=i

r−3
ij + vi (3)

and the total force acting on it is equal to

Fi =
(

3γ

N∑
j 6=i

(ui − uj )r
−5
ij , 3γ

N∑
j 6=i

(vi − vj )r
−5
ij − 1

)
≡ (γfui

, γfvi
− 1). (4)

In equilibrium, the forceFi has to be zero. Obviously, the same must be true for the
square of its absolute value,|Fi |2. Taking a group ofM levitating particles in equilibrium,
we have

0 = ‖FM‖ ≡
M∑
i=1

|Fi |2 =
M∑
i=1

[(γfui
)2 + (γfvi

− 1)2]. (5)

In principle, the above equation could be used to determineγ from the coordinates of
the particles. One should take, however, into account that by scanning the positions of the
particles some errors are possible, which may cause that, for the scanned coordinates, no
solution of (5) exists forγ . Hence, it is better to search forγ which will minimize the norm
‖FM‖ in spite of making it zero. (If the components of the particles are known exactly,
both ways are equivalent.) From the condition

∂

∂γ
‖FM‖ = 0

one obtains the required equation forγ

γ =
∑M

i=1 fvi∑M
i=1(f

2
ui

+ f 2
vi
)
. (6)

Using a scanner, we analysed a few photographs of the system of magnetic spheres. The
photographs provided us by Piotr Pierański, corresponded to various voltages,U , applied
to the coils which were the source of the magnetic field. As the magnetic moment induced
in steel balls is proportional to the magnetic field, and hence to the voltage, the parameter
γ should be proportional to the square of the voltage. In figure 3 we present the plot of
the parameterγ , determined by the above method from the photographs, versusU2. As
can be seen,γ is (roughly) proportional toU2. Thus, the 3-inverse-power potential can be
thought of as a reasonable approximation of the magnetic sphere interactions.

Figure 3. Parameterγ (in arbitrary units), calculated from (6) for
a few experimental structures, versus the square of the voltage,U2.
The broken line represents the linear fit to the data; errors are of the
order of the size of the circles.
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Remark 1. The above method can be easily generalized to potentials composed of many
terms with coefficientsγk (k = 1, . . . , m). In such a case one needs to solve a set ofm

linear equations with unknown coefficientsγk. Here we do not present such an analysis of
the magnetic sphere interactions because our scanning data were not precise enough to give
any conclusive results in this case.

4. Continuous medium approximation

The systems studied above numerically are finite and, hence, subject to boundary conditions
which can modify an ‘ideal’ structure, like gravity’s rainbow, one might expect in an infinite
system (L, N → ∞, L/N = constant). The latter system is, however, very difficult to study
in the discrete case. For this reason we decided to use the continuous medium approximation,
for which analytic calculations can be done efficiently. (This approximation is on the same
level of idealization as the arguments leading to the concept of the conformal crystals [7].)
The calculations within this approximation should help to answer the question if, and when,
the stable structure of a system in a uniform external field can correspond to a conformal
crystal.

4.1. General considerations

In this subsection we describe some general properties of conformal crystals within the limit
of a continuous medium.

Let us denote by

w = f (z) wherez = x + iy andw = u(x, y) + iv(x, y) (7)

an analytic function which transforms points(xk, yk) of a certain lattice (in this paper we
will assume that this is a hexagonal lattice) on the(x, y)-plane into points(uk, vk) of the
(u, v)-plane. Further on we will treat the initial (non-deformed) lattice as a continuous
elastic medium of given equation of state and elastic properties which are determined by
the interactions between the points of the lattice. We will study the properties of the resulting
(deformed) continuous medium, expecting that it will reasonably reproduce the properties of
the resulting lattice everywhere, except the regions where the density of the system changes
rapidly on the length scale of the lattice constant.

The components of the Lagrange strain tensor of a deformation described by the above
mapping are [9, 10]:

εxx = [(∂xu)2 + (∂xv)2 − 1]/2 (8)

εyy = [(∂yu)2 + (∂yv)2 − 1]/2 (9)

εxy = εyx = (∂xu∂yu + ∂xv∂yv)/2 (10)

where∂ζ means differentiation with respect toζ = x, y.
The Cauchy–Riemann conditions [11] for the analytic functionw = f (z):

∂xu = ∂yv (11)

∂yu = −∂xv (12)

imply that the strain tensor is locally isotropic:

εxx = εyy (13)

εxy = εyx = 0. (14)
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On the other hand, the Cauchy–Riemann conditions (11), (12) can be obtained from the
local isotropy of the strain tensor. Namely, it follows from (14) that

∂xu∂yu = −∂xv∂yv. (15)

Multiplying both sides of (13) by(∂yu)2 and using (15) one obtains

(∂xv)2(∂yv)2 + (∂xv)2(∂yu)2 = (∂yu)4 + (∂yv)2(∂yu)2

what can be rewritten as

[(∂yu)2 + (∂yv)2][(∂xv)2 − (∂yu)2] = 0.

For any non-isometric transformation this implies either (12) or

∂xv = ∂yu. (16)

Equation (12) combined with (15) leads to (11). Equations (11), (12) constitute the Cauchy–
Riemann conditions for the functionf (z) = u(x, y) + iv(x, y). Equation (16) combined
with (15) leads to

∂xu = −∂yv. (17)

Equations (16) and (17) constitute the Cauchy–Riemann conditions for the functionf̄ (z) =
u(x, y) + iv̄(x, y), wherev̄(x, y) ≡ −v(x, y).

Thus, the condition that a mapping is conformal is equivalent to the requirement of
local isotropy of the strain, i.e. that any infinitesimal volume is uniformly compressed and
not sheared [7].

The Jacobian of the transformation(x, y) → (u, v):

j (u, v|x, y) = ∂xu∂yv − ∂xv∂yu = (∂xu)2 + (∂yu)2 =
∣∣∣∣dw

dz

∣∣∣∣2

gives the ratio of the infinitesimal volumes after and before the transformation. Hence, the
relation between the corresponding densities is given by

ρw = ρz

∣∣∣∣dw

dz

∣∣∣∣−2

(18)

whereρz = constant is the density of the initial (hexagonal) lattice. The assumption that
f (z) is an analytic function is then equivalent to the assumption that logρw is a harmonic
function, i.e.

1w ln ρw = 0 (19)

where1w = (∂u)
2 + (∂v)

2. This can be easily shown writing the first derivative of the
analytic function:

z = f −1(w) ≡ h(w) (20)

in the form

h′(w) = R(u, v) exp[iφ(u, v)]. (21)

The logarithm ofh′(w) ≡ dz/dw is an analytic function with the real part

logR(u, v) = 1
2 log(ρw/ρz) (22)

and the imaginary partφ(u, v). As the real (and the imaginary) part of any analytic function
is harmonic [11], one obtains (19). On the other hand, if (19) is fulfilled, then using (22)
one can show that logR(u, v) is a harmonic function which generates the analytic function
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h′(w) defined in (21). The latter function is related, via equation (20), to the analytic
transformationw = f (z).

Since the infinitesimal volume is uniformly compressed by the conformal deformation,
the stress tensor,σ, at the point(u, v) must be locally isotropic and depends only on the
density

σ = −p[ρ(w)]I (23)

wherep(ρ) is the pressure corresponding to the densityρ and I is the unit matrix. As
the density of the local force field,f ≡ (fu, fv), stabilizing the deformation is the minus
divergence of the stress [9],f must be equal to the gradient of the pressure:

f = −∇w · σ = ∇wp[ρ(w)] = ∂p

∂ρw

∇wρw (24)

where∇w = û∂u + v̂∂v, andû, v̂ are the unit vectors in theu, v directions, respectively.
Equation (24) gives the density distribution ofany locally isotropic system whose

equation of state is given byp = p(ρ) and which is placed in an external fieldf . (This can
be, for example, a fluid!) We should stress that, in general, this solution does not correspond
to any conformal mapping of a periodic crystalline lattice. Thus for any conformal mapping
of a periodic lattice the density must additionally fulfil equation (19).

4.2. The case of a vertical external field

In this subsection it is shown that all possible conformal crystalline structures in a vertical
field correspond to a complex logarithmic mapping [7].

If we assume that the force has only a vertical component, i.e. if we consider a more
general case than that of a uniform field, we have

0 = fu = ∂p

∂ρ

∂ρ

∂u
. (25)

As the requirement of the stability of the system implies

∂p

∂ρ
> 0. (26)

Equation (25) can be replaced by

0 = ∂ρ

∂u
= ρz

∂

∂u

∣∣∣∣ dz

dw

∣∣∣∣2

. (27)

Consequently, the absolute valueR ≡ |h′(w)| of the analytic functionh′(w) ≡ dz/dw has
to be independent ofu, which means that the function can be written as

h′(w) = R(v) exp[iφ(u, v)].

The real and imaginary parts of this function:

ξ = Reh′(w) = R(v) cos[φ(u, v)]

η = Reh′(w) = R(v) sin[φ(u, v)]
(28)

have to fulfil the Cauchy–Riemann conditions:

∂uξ = ∂vη (29)

∂vξ = −∂uη (30)
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which, in explicit form, can be written as

∂R

∂v
sinφ + R

∂φ

∂u
sinφ + R

∂φ

∂v
cosφ = 0

∂R

∂v
cosφ + R

∂φ

∂u
cosφ − R

∂φ

∂v
sinφ = 0

(31)

and lead to
dR(v)

dv
+ R(v)

∂φ

∂u
= 0

R(v)
∂φ

∂v
= 0.

(32)

The second equation of (32) implies thatφ does not depend onv, whereas the first leads to

R(v) = R0e−vφ′(u).

As R(v) does not depend onu one gets

φ(u) = αu + constant.

Thus
dz

dw
≡ Reiφ = R0ei×constante−αv+iαu = R̃0eiαw.

Hence

z = R̃0

iα
eiαw

and [7]

f (z) ≡ w = 1

iα
logz + 1

iα
log

iα

R̃0

= 1

iα
logz + f1 (33)

wheref1 = f (1). In the following we will assume thatα > 0 which corresponds to the
field directed opposite tôv.

The above result means that the only conformal mapping fulfilling the requirement that
the field is vertical is the logarithmic mapping. For such a mapping one has∣∣∣∣dw

dz

∣∣∣∣ = 1

α|z| (34)

and the density of the conformal crystal is

ρw = ρz|αz|2 = ρzα
2| exp[iα(w − f1)]|2

= ρzα
2| exp(−iαf1)|2 exp(−2αv). (35)

It is easy to check that for the mapping given by (33):

∂ρw

∂u
= 0 (36)

and
∂ρw

∂v
= −2αρw. (37)

Remark 2. Applying similar considerations to another simple and interesting case, which
corresponds to a field of a radial symmetry, one concludes that the class of possible
conformal mappings is also very narrow. The only possibilities are [7]

w = Cz1/β or w = eCz

whereβ 6= 0.



3972 K W Wojciechowski and J K los

4.3. n-inverse-power potentials

Below we consider a conformal mapping of a system interacting through then-inverse-
power potential. We show that within the continuous medium approach no conformal
mapping exists which would transform a perfect hexagonal lattice into a structure stable in
the presence of a uniform external field.

Without any external field, the energy per site of an infinite hexagonal lattice (which, for
n > 2, is believed to correspond to the globally stable structure of the studied 2D system)
of particles interacting by the pair-wise potentialu(r) = γ r−n is equal to

Un(a) = 1
2

∑
i 6=0

u(|ri |) (38)

whereri denote the positions of the lattice sites of the hexagonal lattice when the centre of
the coordinate system is located atr0; a is the lattice constant. Taking into account that

u(r) = r−nu(1)

one can write

Un(a) = Un(1)a−n ≡ Una
−n

whereUn is the energy per site of the hexagonal lattice with the lattice constanta = 1:

Un ≡ 3
∞∑

k=1

∞∑
l=0

u[(k + l/2)2 + (
√

3l/2)2]

= 3γ

∞∑
k=1

∞∑
l=0

[(k + l/2)2 + (
√

3l/2)2]−n/2. (39)

Differentiation of the energy per site,Un(a), with respect to the volume per site,
V = √

3a2/2 ≡ ρ−1, gives the pressure

p ≡ − ∂

∂V
Un(a) = − 1√

3a

∂

∂a
(Una

−n) = 3−1/2nUna
−(n+2)

= 3n/42−(n+2)/2nUnρ
1+n/2 ≡ Cnρ

1+n/2. (40)

Substituting equation (40) into (24) and using (36) and (37), one obtains the following
result for the components of the gravitational field:

gu = 0 (41)

gv = fv/ρw = ∂p

∂ρ

∂ρw

∂v
/ρw = −(n + 2)αCnρ

n/2
w

= −(n + 2)α(n+1)Cn| exp(−inαf1)|ρn/2
z exp(−nαv). (42)

As is easy to see,gv is an exponentially decreasing function of the height,v, for any
positiven. This means that no uniform field can stabilize the perfect conformal crystal with
the n-inverse-power potential.

4.4. Elastic properties and stability

In this section we discuss elastic properties and the stability of conformal crystals and
illustrate them in the case of then-inverse-power interactions.

To describe the elastic properties of an isotropic medium two elastic constants are
necessary, in general [9, 10]. In the present considerations it will be convenient to use in
this role: (i) the bulk modulus,B, measuring the resistance of a material with respect to a



2D soft condensed matter in a uniform field 3973

change of its volume (compression) and (ii) the shear modulus,µ, measuring the material
resistance with respect to a change of its shape (shear). When the isotropic material is
conformally deformed the local deformation corresponds to pure compression and, hence,
a single elastic constant (the bulk modulus) is sufficient to describe such a deformation.

If the equation of state of the system is known, the bulk modulus can be easily calculated
by differentiating the pressure with respect to the volume:

B = −V (∂p/∂V ) = ρ(∂p/∂ρ). (43)

Although the calculation of the shear modulus can be non-trivial in general, it is very simple
for a 2D static and isotropic crystal, like the hexagonal lattice interacting via then-inverse
power potential. This is so, because in such a case the Cauchy relations hold true [10].
These relations imply that

µ = B/2 − p. (44)

Thus, the knowledge of (the pressure and) the bulk modulus is sufficient to describe elastic
properties of any 2D static and isotropic crystal and, hence, also the (local) elastic properties
of a static conformal crystal.

In the particular case of the static lattice with the centraln-inverse-power interactions,
the pressure alone is sufficient to determine the elastic constants:

B = (n/2 + 1)p (45)

µ = (n/4 − 1/2)p. (46)

In the general case, however, if the Cauchy relations do not hold (e.g. the interactions are
not central, the temperature is positive, etc), one needstwo independent elastic constants to
describe the elastic properties of an isotropic body. The same is true (locally) for conformal
crystals if non-conformal deformations are allowed. (Obviously, for conformal deformations
a single elastic constant, the bulk modulus, is sufficient.)

Stability of an isotropic system requires that bothB andµ are positive. It follows from
(46) that forn 6 2 both the isotropic as well as any conformal crystal cannot be stable.

4.5. Remark on other potentials

Below we discuss the closure that no smooth potential exists for which a static conformal
crystal can be stable in a uniform field.

For the conformal mapping corresponding to a uniform field, it follows from
equations (24) and (37) that

ρwgv = ∂p

∂ρ

∂ρw

∂v
= ∂p

∂ρ
(−2α)ρw. (47)

Solving the above equation withgv = −g = constant, one obtains the following dependence
of the pressure on the density:

p = g

2α
ρ. (48)

It is easy to check that the above equation of state is fulfilled for a lattice with a
pairwise nearest-neighbour interaction potential which is proportional to the logarithm of
the interparticle distance†. However, as was mentioned in the previous section, the system

† Although the interaction range is not well defined for such a potential, the advantage of this choice is that one
avoids infinities appearing in the calculations of the energy of the infinite lattice with the potential defined in the
standard way:ulog(r) = c1 + c2 logr; cf equation (39).
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interacting via the logarithmic potential has no stable static configurations in 2D. (This can
be easily obtained by explicit calculations, showing thatµ is negative, i.e. the stability
conditions do not hold. The special form of the logarithmic potential also makes it possible
to deduce it from general considerations. The latter is possible because the logarithmic
potential is a solution of the Laplace equation in 2D. In such a case the average value of
the potential on a circle centred on any point, and not containing a particle, is equal to the
value at this point. Thus, no point corresponds to the minimum energy.)

We did not find any potential which led to the equation of state given by (48) on a
stable lattice of points interacting through this potential. We expect that such a potential
does not exist. Thus, we conjecture that no smooth interparticle pairwise potential exists,
for which any conformal crystal is stable in a constant gravitational field.

4.6. Gravity’s rainbow

To understand why gravity’s rainbow can be observed in the experiment despite the fact
that, as follows from the previous sections, it does not correspond to a conformal crystal, it
is worthwhile considering a certain class ofnon-conformaldeformations of the logarithmic
mapping.

Let us consider the following mapping of the(x, y)-plane, represented in the polar
coordinates(R, φ), into the(u, v)-plane:

u = φ/α

v = V

(
− 1

α
logR

)
.

(49)

As is easy to see, the above mapping corresponds to the (conformal) logarithmic mapping
if V (z) ≡ z; other choices correspond to non-conformal deformations of the initial lattice.

For the mapping defined by (49), the components of the (local) strain tensor in the(u, v)

coordinates are equal to

εuu = [1 − (αR)2]/2

εvv = [1 − (αR)2]
/

2

[
V ′

(
− 1

α
logR

)]2

εuv = 0.

(50)

We should stress here that the local strain tensor is diagonal in the(u, v) coordinates; there
is no shear. Moreover, the local strain does not depend onu. Thus, the local stress tensor
in the deformed system must also be diagonal and independent ofu. In consequence, as
follows from (24), the compensating force field† for the deformation defined in (49) must
be vertical.

The above remarks indicate that for any external vertical field which does not depend
on u, by a proper ‘tuning’ of thefree function V (z), one can construct a (non-conformally
deformed) structure which will compensate the applied field. In particular, this is possible
in the case of a uniform field, and the experimental data of [1] seem to suggest that this is
indeed so. We would like to stress, however, that such solutions are possibleonly when
the height of the (levitating part of the) system is not large. For a large height, ‘tuning’
of the locally isotropic structure corresponding to an exponential field must lead to a large

† The explicit form of the compensating force field can be determined for a givenV (z) (and vice versa) if the
exact dependence of the energy of the periodic crystal on the density and anisotropy is known. For anisotropic
structures interacting via then-inverse-power potentials this dependence can be determined only numerically.
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local anisotropy of the strain in the system. This is unfavourable not only because any
anisotropy corresponds to an increase of the energy (which, at a given density, is minimal
in the isotropic case) but mainly because the underlying hexagonal lattice becomesunstable
when the anisotropy reaches a certain value. (As one can check, this value is as small as
about 10% in the uniformly deformed 3-inverse-power-lattice for certain orientations of the
crystalline axes.)

5. Conclusions

Numerical results obtained for a finite system of particles interacting through the 3-inverse-
power potential with a hard core indicate that if the system is confined by hard walls
and embedded in a uniform field then the gravity’s rainbow, i.e. topologically perfect
structure, is rather an exception than a rule in the system. Taking into account the analysis
performed in section 3, we expect that this conclusion is also valid for the experimental
system described in [1], i.e. gravity’s rainbow can be observed only in asmall domain
of parameters characterizing the system, and defects are unavoidable if the height of the
levitating part of the structure is large enough.

We proved that, within the continuous elasticity limit, no conformal crystal of particles
interacting via ann-inverse-power potential can be stable in a uniform gravitational field.
This result indicates that even in the domain of parameters for which gravity’s rainbow was
observed in the experiment, this structure does not correspond to a conformal crystal. In
other words there must be some local anisotropy present in the experimentally observed
structure. This anisotropy should induce the creation of defects when the sample is large
enough. Taking into account that a perfect conformal crystal, which is locally isotropic and,
hence, minimizes the local elastic energy, can exist for then-inverse power potentials only
for exponentially decaying fields, one could speculate about the possibility of the existence
of structures (in a uniform field) composed of arcs of different lengths. Shorter (in the
horizontal direction) arcs might exist near the surface of the system, and longer ones might
be observed deeper in the sample.

We conjecture that no smooth interaction pairwise potential can stabilize any static,
infinite conformal crystalline structure in a uniform field. The arguments presented in this
paper do not exclude, however, the possibility of the existence of somenon-staticconformal
structures, i.e. in which the lattice sites correspond only to the probability maxima of finding
particles. Such a situation may correspond, for example, to some quantum systems.

The results presented in this work indicate that in the case of vertical external fields the
notion of conformal crystals is of rather limited application: forn-inverse-power potentials
it can be applied only to exponentially decaying fields which do not play any crucial role in
practice. We do not claim, however, that it must be so also for fields of other symmetries.
Amongst them, fields of central symmetry are of particular interest. This is related to the
fact that various regular patterns of central symmetry exist in biological systems, and the
energetic approach to such structures seems to be very promising [5, 6]. Calculations similar
to those presented in sections 4.2 and 4.3 show, for example, that conformal crystals can
be formed in a field corresponding to a centrifugal force.
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providing us with a few unpublished photographs of configurations of the magnetic sphere
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